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1 Introduction

The normal Feynman approach to calculating n gluon tree-level scattering amplitudes is

well understood but the complexity of calculations grows quickly with nmaking the method

inefficient and prohibitive. It was recently observed that such gluon amplitudes localise

on simple curves in twistor space [1] and this led to a new set of rules for calculating

them [2]. This approach provides an alternative to the Feynman rules with drastically

reduced complexity, for example the Parke-Taylor amplitude for tree level scattering of n�2

positive helicity gluons and 2 negative is remarkably simple [3]. The new set of rules was

initially proven outside the Lagrangian formalism using the BCFW recursion relation [4]

and using twistor methods, (See [5] through to [12]). More recently they have been derived

in the non-supersymmetric theory by applying a non-local canonical transformation to the

Yang-Mills action on the light cone [13, 14]. The action is split into the Chalmers-Siegel

action describing the self-dual sector [15] plus the rest and the canonical transformation

maps the self-dual part of the action to a free action. The transformation was also studied

in more detail in [16].

This Lagrangian approach to the derivation of the MHV rules was extended to N � 4

supersymmetric Yang-Mills theory in 4 dimensions in [17] where they write the N=4 SYM

action derived in [18] in terms of superfields Φ and Φ̄. Using the CPT self conjugacy

property of the superfields they write down the classically free, self-dual part of the action.

They then extend the canonical transformation of [14] to map this to a free theory. The

rest of the action gives us the interacting terms.
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In a recent paper [19] the transformation and its inverse is used to construct infi-

nite dimensional non-local symmetries of the self-dual part of the non-supersymmeteric

Yang-Mills theory off-shell. (Also see [20] where Dolan constructs symmetries on-shell

and [21], [22] and [23]). They use the simple fact that a free theory with Euler-Lagrange

equation Ωpxqφpxq � 0 has a symmetry if ΩpxGq � Ωpxq where xÑ xG is a finite isometry

of the space-time. Then since 0 � ΩpxGqφpxGq � ΩpxqφpxGq, we see that φpxGq is a new so-

lution. Because of the linearity of the free Euler-Lagrange equation we can construct a new

solution as φpxq � ǫφpxGq. This leads to higher order conserved currents such as the Zilch

of the electromagnetic field [24] and those calculated in [25]. More generally, we could con-

sider the case where xÑ xG is a conformal tranformation with fpxqΩpxGq � Ωpxq. In the

paper [26] the authors construct infinite-dimensional symmetries of the self-dual Yang-Mills

equations based on conformal symmetries, we however shall concentrate on isometries.

In this paper we shall extend this and construct symmetries of the N � 4 self-dual

SYM action by using the canonical transformation to map the self-dual action to the free

theory and then writing the symmetry in terms of the free fields. We derive an expression

for the inverse transformation and use it to write the expression in terms of the original

variables. We examine the first 4 orders in powers of the fields and then hypothesise the

general result. We then prove the above expression leaves the action invariant and conclude

by showing how we can extract expressions for the transformations of the component fields.

2 Review of N � 4 super Yang-Mills on the light cone and the MHV

rules Lagrangian

2.1 Light cone N=4 SYM

We shall review the construction of the N � 4 supersymmetric Yang-Mills action on the

light cone. For a more detailed treatment see [17, 18]. Let us start by considering the

action in 10 dimensions, which is given by

S � »
d10x

"
1

4
Fµν

a Fµνa � 1

2
iψ̄aΓµDµψ

a

*
(2.1)

for µ, ν � 0, � � � , 9 and where Γ is a generalisation of the Dirac gamma matrices to 10

dimensions. The spinor degrees of freedom satisfy the Weyl and Majorana conditions and

F a
µν is given by

F a
µν � BµA

a
ν � BνA

a
µ � gfabcAb

µA
c
ν .

As stated in [18] it is straightforward to show that the action (2.1) is invariant under the

supersymmetry transformations

δAµ � ξ̄Γµψ δψ � �1

2
FµνΓµνξ.

It is known however that consecutive supersymmetry transformations of this form do not

close to form an algebra off-shell. To make this algebra close requires the introduction
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of auxiliary fields, however as explained in [18] it is not known how to do this. Take for

example the commutator of transformations of the spinor fieldpδξ2δξ1 � δξ1δξ2qψ � �
ξ̄2Γ

µξ1
�
Dµψ � 1

2

�
ξ̄2Γ

µξ1
�
ΓµΓνDνψ (2.2)

which, by using the field equation ΓµDµψ � 0, closes topδξ2δξ1 � δξ1δξ2qψ � �
ξ̄2Γ

µξ1
�
Dµψ.

It is still possible to retain half the susy on-shell at this stage by transforming to a frame

in which only p̂ is non vanishing. As explained in the papers [17, 18], if we now split the

spinor as follows

ψ � �1

2

�pΓqΓ� qΓpΓ	ψ � pψ � qψ
where Γ̂ � 1{?2

�
Γ0 � Γ1

�
and Γ̌ � 1{?2

�
Γ0 � Γ1

�
then (2.2) now closes with on-shell

degrees of freedom AK and qψ leaving only the SOp8q subgroup of the original Lorentz

group manifest [17]. Now (L.Brink et al) [18] dimensionally reduce this to four dimensions

which breaks the SOp8q invariance

SOp8q Ñ SOp6q b SOp2q � SUp4q b Up1q (2.3)

leaving the 4 dimensional SUSY algebra 
q̄A, qB

( � �i?2δA
B B̂ (2.4)

where A and B are SUp4q indices A,B � 1, 2, 3, 4. A supersymmetry transformation on

superspace
�
x̂, x̌, x̃, x̄; θ, θ̄

�
generates the following change in coordinates�

x̂, x̌, x̃, x̄; θ, θ̄
�Ñ �

x̂� i?
2
ξAθ̄A � i?

2
θAξ̄A, x̌, x̃, x̄; θ � ξ, θ̄ � ξ̄



where θ are Grassman variables. The transformations give rise to the following SUSY

generators and covariant derivatives, d and d̄

qA � BBθA
� i?

2
θ̄AB̂ q̄A � � BBθ̄A

� i?
2
θAB̂

dA � BBθA
� i?

2
θ̄AB̂ d̄A � � BBθ̄A

� i?
2
θAB̂ (2.5)

and it is easily verified that q and q̄ do indeed satisfy the SUSY algebra given in [18] and

in (2.4). A chiral superfield is defined by imposing the constraint

d̄AΦ � 0 (2.6)

and further, the N=4 susy multiplet is CPT self conjugate and so we impose a second

‘reality’ constraint in the same way that was discussed in [18],

Φ̄ � ǫABCD

48B̂2
dAdBdCdDΦ. (2.7)

– 3 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
6

A superfield satisfying both (2.6) and (2.7) is written

Φpx, θ, θ̄q �1B̂Apyq � iB̂ θAλApyq � i
1?
2
θAθBC̄ABpyq� ?

2

3!
θAθBθCǫABCDλ̄

Dpyq � 1

12
θAθBθCθDǫABCDB̂Āpyq (2.8)

where y � �
x̂� i?

2
θAθ̄A, x̌, x̃, x̄

	
is known as the chiral basis in which (2.6) is trivially

satisfied and the fields A,λ and C are the gauge fields, fermions and scalars respectively.

(See [27], page (30)). In terms of this superfield the N=4 super Yang-Mills action on the

light cone in 4 dimensions is

S � tr

»
d4xd4θd4θ̄

"
Φ̄
B̂B̌ � B̃B̄B̂2

Φ� 2

3
gfabc

�
1B̂ Φ̄aΦbB̄Φc � complex conjugate

�� g2

2
fabcfade

�
1B̂ �ΦbB̂Φc

	 1B̂ �Φ̄dB̂Φ̄e
	� 1

2
ΦbΦ̄cΦdΦ̄e

�* (2.9)

as given in [18] and [17]. It is straightforward to express this in component form which

agrees with the expression in [18], (Equation (3.13) in their paper).

2.2 MHV rules Lagrangian for N=4 SYM

Let us examine the helicity content of the action by considering each part. We write

S � S�� � S��� � S��� � S����
with

S�� � tr

»
d4xd4θd4θ̄

"
Φ̄
B̂B̌ � B̃B̄B̂2

Φ

*
S��� � tr

»
d4xd4θd4θ̄

"
2

3
gfabc 1B̂ Φ̄aΦbB̄Φc

*
and so on for S��� and S����. In the MHV rules (Maximal helicity violating amplitude)

an n point amplitude consists of 2 negative helicities and n-2 positive helicities (see [2, 3, 7]).

In parallel with papers by Mansfield, and Ettle and Morris [14, 16], the part of the action

S��� clearly does not satisfy this requirement and further, terms with more than two

positive helicities are missing from the full action (2.9).

We can express (2.9) in the chiral basis y by expressing the action in terms of Φ only

using (2.7) at the expense of introducing covariant derivatives in to the action. One will

get a kinetic term, a cubic term with 4 covariant derivatives and a further two terms with 8

covariant derivatives, as explained in [17]. Chalmers and Siegel [15] show that terms which

contain only four covariant derivatives, i.e. S�� � S��� express the self-dual sector in

terms of the Chalmers-Siegel action. Classically, self-dual Yang-Mills is free so we wish to

transform the self-dual sector S���S��� into a free action by a canonical change of fields

Φrχs. This procedure absorbs the unwanted term S��� into a free action, and it turns out

– 4 –
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the change of field variables generates all the missing terms S�������. By that argument,

Feng and Huang give us the Chalmers-Siegel action describing the self-dual sector as

SSD � tr

»
d4xd4θ

"
Φ
�B̂B̌ � B̃B̄	Φ� 2

3
B̂Φ �

Φ, B̄Φ�*� tr

»
d4xd4θ

 
χ
�B̂B̌ � B̃B̄	χ( (2.10)

where the free superfield χ is written as

χpy, θq �1B̂Bpyq � iB̂ θAρApyq � i
1?
2
θAθBD̄ABpyq� ?

2

3!
θAθBθCǫABCD ρ̄

Dpyq � 1

12
θAθBθCθDǫABCDB̂B̄pyq (2.11)

in the chiral basis with B and B̄ the gauge fields, ρ and ρ̄ are fermions and DAB is a four

by four anti-symmetric matrix of real scalars (thus having six independent scalar fields).

The field transformation derived in [17] satisfies the equation

tr

»
d4xd4θ

"�ΦB̃B̄Φ� 2

3
B̂Φ �

Φ, B̄Φ�* � tr

»
d4xd4θ

!�χB̃B̄χ) (2.12)

arising from (2.10) and the condition that Φ and χ have the same x̌ dependence (See [14]).

Further, we apply the additional constraint

tr

»
d4xd4θΦB̂B̌Φ � tr

»
d4xd4θχB̂B̌χ (2.13)

as discussed in Feng and Huang, [17]. They calculate the transformation Φrχs in their paper

but not the inverse transformation which we shall also need. We shall state their result here

and calculate the inverse for ourselves using their procedure. Their field redefinition reads

Φ1 � χ1 � 8̧
n�3

»
2���nCp12 � � � nqχ2̄χ3̄ � � �χn̄ (2.14)

where we use the abbreviations Φi � Φppiq and Φī � Φp�piq as we shall do throughout

this paper and we drop the momentum conserving delta function δ pp1 � p2 � � � � � pnq. In

the above we use the notation »
1���n � »

d4p1p2πq4 � � � d4pnp2πq4 .
The kernel C is given by

Cp12 � � � nq � p�1qn 2̂3̂24̂2 � � � zn� 2
2 zn� 1

2
n̂p2, 3q p3, 4q � � � pn� 1, nq (2.15)

where the bracket p , q is given by pi, jq � îj̃ � ĩĵ. Now let us calculate the inverse field

redefinition χrΦs for ourselves. We guess the form of the expansion as

χ1 � Φ1 � 8̧
n�3

»
2���nD p12 � � � nqΦ2̄Φ3̄ � � �Φn̄. (2.16)
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Under the field redefinition and the product of superfields, the A fields do not mix with

any of the other fields in the multiplet as they are zeroth order in the expansion of θ in

the superfield. We can simply read off the field transformation for the A and B fields.

B1

ip̂1

� A1

ip̂1

� 8̧
n�3

»
2���nDp12 � � � nqA2̄

ip̂2

A3̄

ip̂3

� � � A3̄

ip̂n
.

We will compare this to the transformation that is in the literature, namely the pa-

pers [14], [16] and [19]. We have

B1 � A1 � 8̧
n�3

»
2���npiqn 1̂p1, 2q 1̂p1, 2 � 3q � � � 1̂p1, 2 � � � � � pn� 1qqA2̄A3̄ � � �An̄

giving our expression for Dp12 � � � nq as the following

Dp12 � � � nq � �p�1qn 1̂n�32̂3̂ � � � n̂p1, 2q p1, 2 � 3q � � � p1, 2 � 3� � � � � pn � 1qq (2.17)

We can prove this expression by substituting it into (2.12), writing down a recursion rela-

tion for the coefficients D and showing they satisfy this recursion relation as follows. Given

the canonical transformation condition proved in [17], namelyB̂Φ � »
d4y

δχpyq
δΦpxq B̂χpyq,

we substitute this in to (2.12), transform into momentum space and rearrange to arrive at

a relation between fields χ and Φ given by»
p1

ωpp1qΦpp1q δχppq
δΦpp1q � »

p1p2p3

rp̂2Φpp2q, p̄3Φpp3qs
p̂1

δpp1 � p2 � p3q δχppq
δΦpp1q �� ωppqχppq

where ωppq � p̄p̃{p̂. Then we take the ansatz for the field redefinition (2.16) and proceed

by substituting this into the above expression to extract the recurrence relation

Dnp1 � � � nq � 1

ω1 � ω2 � � � � � ωn

n�1̧

k�2

tk � 1, kuDn�1p1, 2, � � � , k�1, k�pk�1q, k�2, � � � , nq
and then substituting (2.17) on the right hand side and taking a factor of Dnp12 � � � nq
outside the sum we get � Dnp1 � � � nq

1̂pω1 � � � � � ωnq 8̧
k�2

tk, k � 1u
k̂zk � 1

p1, p2,kq .
with ti, ju � îj̄ � īĵ. The expression under the sum then reduces to �1̂ pω1 � � � � � ωnq
thus proving the result.

– 6 –
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As an aside, we can use the inverse field redefinition to calculate the field redefini-

tion B̄rA, Ās, an expression missing from [14], [16] and [19]. We calculate the component

of (2.16) (which is now proven) that is fourth order in θ and find

B̄1̄ � 8̧
n�2

ņ

k�2

»
2���n k̂1̂Θkp12 � � � nqA2̄ � � � Āk̄ � � �An̄

where

Θkp1 � � � nq � � k̂
1̂
Γp1 � � � nq.

A further point to note about (2.16) is that since each term in the expansion is linearly

independent, and since χ is a superfield satisfying the constraints (2.6) and (2.7) then it

makes sense that each term in the expansion also satisfies these constraints and is therefore

a superfield which has the same form as the free field χ and the SYM field Φ. So if we

write the field redefinition as

χp1q � Ψ0p1q �Ψ1p1q �Ψ2p1q � � � �
and so on, with Ψ0 � Φ and defining

Ψn�2 � »
2���nD p12 � � � nqΦ2̄Φ3̄ � � �Φn̄ (2.18)

as the individual terms in the field redefinition, then the Ψn�2 trivially satisfies the con-

straint (2.6) since χ can be written in the chiral basis in which it contains no θ̄ and we can

write the conjugate of Ψ as the following

χ̄p1q � Ψ̄0p1q � Ψ̄1p1q � Ψ̄2p1q � � � �
then since χ satisfies (2.7) we write

χ̄p1q � ǫABCDdAdBdCdD

481̂2
tΨ0p1q �Ψ1p1q �Ψ2p1q � � � � u� ǫABCDdAdBdCdD

481̂2
Ψ0p1q � ǫABCDdAdBdCdD

481̂2
Ψ1p1q � ǫABCDdAdBdCdD

481̂2
Ψ2p1q � � � � .

Since all the terms Ψn�2 are linearly independent, we have

Ψ̄0 � Φ̄ � ǫABCDdAdBdCdD

481̂2
Φ

Ψ̄1 � ǫABCDdAdBdCdD

481̂2
Ψ1

Ψ̄2 � ǫABCDdAdBdCdD

481̂2
Ψ2

...
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and so on, thus showing that all the Ψn�2 individually satisfy both the constraints and

that they have the same form as (2.8)

Ψpy, θq �1B̂Apyq � iB̂ θAλApyq � i
1?
2
θAθBC̄ABpyq� ?

2

3!
θAθBθCǫABCDλ̄

Dpyq � 1

12
θAθBθCθDǫABCD B̂Āpyq (2.19)

where the underscores attached to the component fields are present to distinguish them

from the fields present in (2.8) and depend on some multiples of the fields in (2.8) and we

have dropped the superscripts on Ψ.1 For example,

A1 � »
2���n �piqn1̂n�1p1, 2qp1, 2 � 3q � � � p1, 2 � � � � � pn� 1qqA2̄ � � �An̄pλAq1 � ņ

k�2

»
2���n �piqn1̂n�1p1, 2qp1, 2 � 3q � � � p1, 2 � � � � � pn� 1qqA2̄ � � � pλAqk̄ � � �An̄

...

and so on for C, λ̄ and Ā. This is a result we need to use later.

3 Symmetries in free supersymmetric theories

3.1 Transformations of N=1 chiral free SUSY

As a precursor to studying symmetries of the N=4 Super Yang-Mills multiplet, let us study

a simpler theory with action

S � »
d4x

!
ηµνBµ rϕBνϕ� rψiγµBµψ

)
. (3.1)

Clearly this will be invariant under the component SUSY transformations, for example

see [27]. If xÑ xG is a member of the isometry group of the space-time then the action is

invariant under

δϕpxq � ǫrλψpxGq, δ rϕpxq � ǫ rψpxG�1qλ
δψpxq � �iγµBµϕpxGqλ, δ rψpxq � rλiγµBµ rϕpxG�1q (3.2)

where λ is a constant spinor and the γµ are the Dirac gamma matrices. This is simple to

prove, we have

δS � »
d4x

"
ηµνBµ rϕpxqBνprλψpxGqq � 1

2
ηµνBµp rψpxG�1qλqBνϕpxq� rψpxqiγµBµp�iγνBνϕpxGqλq � 1

2
rλiγνBν rϕpxG�1qqiγµBµψpxq*.

1It is actually a basic fact that products of superfields are also superfields, but as our field Ψ as defined

by (2.18) consists of fields multiplied together at different points and knitted together with a non-local

kernel and integrated over, the situation is not as simple, but as we have discussed it still holds.

– 8 –
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Multiplying out terms and then taking Bν out of the third term as a total derivative, we get

δS � »
d4x

"
ηµνrλBµ rϕpxqBνψpxGq � 1

2
rλBµ rϕpxG�1q tγµ, γνu Bνψpxq� ηµνBµ

rψpx�1

G qBνϕpxqλ� 1

2
Bµ

rψpxq tγµ, γνu BνϕpxGqλ*.
Applying the isometry xÑ xG in the second and third terms and using the Dirac algebra

ηµν � 1

2
tγµ, γνu

we get δS � 0.

3.2 Transformation of the free N=4 multiplet

The free action on the RHS of (2.10) was written as

S � tr

»
d4xd4θχpx, θqΩpxqχpx, θq (3.3)

where Ωpxq � B̂B̌ � B̃B̄ and the change in this action is

δS � 2tr

»
d4xd4θχpx, θqΩpxqδχpx, θq

where the superfield χpx, θq is given by (2.11). The expression for δχ is

δχpy, θq �1B̂ δBpyq � iB̂ θAδρApyq � i
1?
2
θAθBδD̄ABpyq� ?

2

3!
θAθBθCǫABCDδρ̄

Dpyq � 1

12
θAθBθCθDǫABCDB̂δB̄pyq

where δA, δρ, δC, δρ̄ and δB̄ are to be determined. In component form the free action (3.3)

is easily expanded out to give

S � tr

»
d4x

"
B̄pxqΩpxqBpxq � 1

4
D̄ABpxqΩpxqDABpxq � i?

2
ρ̄ApxqΩpxqB̂ ρApxq*. (3.4)

In the paper [18] they give the supersymmetry transformations of the component fields,

Bpxq, ρpxq and DABpxq. The transformations of their conjugates can easily be calculated

directly from eqns (3.15), (3.16) and (3.17) in their paper, or using the super-symmetry

generators qA and q̄A given in (2.5). These transformations on their own do indeed leave the

free action invariant but we can go further than that. We can write the transformations as

δB � εξAρApxGq
δρA � ε

?
2B̂D̄ABpxGqξB � ǫ

?
2ξ̄AB̂BpxGq

δDAB � �iε�ξAρ̄BpxG�1q � ξBρ̄ApxG�1q � ǫABCDρCpxGqξ̄D	
δD̄AB � �iε�ρApxGqξ̄B � ρBpxGqξ̄A � ǫABCDξ

C ρ̄DpxG�1q	
δρ̄ � ε

?
2ξ̄B B̂DBApxG�1q � ǫ

?
2ξAB̂B̄pxG�1q

δB̄ � �iερ̄ApxG�1qξ̄A, (3.5)
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where ξA are finite Grassman numbers carrying SUp4q indices. It is simple to check that

the transformations B Ñ B� δB, ρÑ ρ� δρ, � � � with the δs as given above leave the free

action (3.4) invariant using the fact x Ñ xG is an isometry, which implies ΩpxGq � Ωpxq
and further that the Jacobian of the transformation is unity. However defining the trans-

formations in component form in this manner leads to complications. The terms at the

front of the superfield (2.11), B and ρ, are defined to transform under the isometry xÑ xG

whereas those at the end of the superfield, namely ρ̄ and Ā, transform under the inverse of

the isometry, xÑ xG�1 . This presents a problem in constructing a superfield formulation

of these transformations. It is solved by noticing that we can interchange xG and xG�1

in (3.5) and this will also be a symmetry of the action since we can write H � G�1 and do

the same calculation. Further, since both these are symmetries, we can add them together

to also form a symmetry of the action thus,

δB � ǫξAρApxGq � ǫξAρApxG�1q
...

δB̄ � �iǫρ̄ApxG�1qξ̄A � iǫρ̄ApxGqξ̄A (3.6)

and then this can be written as the sum of two transformed superfields, one with arguments

xG in the component fields and the other with arguments xG�1

, so roughly speaking

δχ � εχGpxq � εχG�1pxq (3.7)

with

χG �iξAρpxGqB̂ � � � �� i

12
ǫABCDθAθBθCθDB̂ρ̄EpxGqξ̄E (3.8)

and similarly for χG�1

. The above is simply the susy transformed field with the arguments

of the component fields being xG (or xG�1

) instead of x.

4 Transformation that leaves N=4 SYM action invariant

In the paper [19], the authors calculate symmetries of the non-supersymmetric Chalmers-

Siegel action. Given the gauge fields A and Ā they use the field redefinition ArBs mapping

the Chalmers-Siegel action to that of the free theory to calculate an expression for δA

in terms of the free field δB order by order in B. The inverse expression BrAs is then

substituted to arrive at an order by order expansion of δA in terms of the A field itself

to non-trivial order in perturbation theory. They then guess the expression for δA to all

orders in perturbation theory and prove that the change in the action is indeed zero. The

expression they arrive at for δA is

δA1 � �ε 8̧
n�2

ņ

i�2

ņ

j�i

»
2���n 1̂

q̂
ΓpqG, iG, � � � , jGqΓpq, j � 1, � � � , n, 1 � � � , i� 1q ��A2 � � �AīG � � �Aj̄G � � �An̄ (4.1)
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where Γ is given by

Γp1 � � � nq � �piqn 1̂p1, 2q 1̂p1, 2� 3q � � � 1̂p1, 2 � � � � pn� 1qq .
We shall extend this to the supersymmetric Chalmers-Siegel action describing the self-

dual sector of N � 4 supersymmetric Yang-Mills on the light cone (2.10) by following the

same procedure described in [19] for ∆Φ using (2.14) and (2.16), and the discussion in

section 3. We shall guess the expression to all orders in perturbation theory by comparison

with (4.1) and substitute this back into the self-dual part of the action (2.10) to prove it

does indeed leave the action invariant.

Start with our expression for the field redefinition Φrχs from (2.14). The change in Φ

is then written

∆Φ1 � 8̧
n�2

ņ

i�2

»
2���nCp12 � � � nqχ2̄ � � � δχī � � �χn̄

where δχ is the transformation of the free field as defined by (3.7). We use a capital Delta

to represent the change in Φ to distinguish it from the change in the free field δχ. Now as

discussed, each term in the series expansion is itself a superfield of the form (2.8) and

δχ1 � 8̧
n�2

»
2���n δ"Dp12 � � � nqΦ2̄ � � �Φn̄

*
.

We shall expand order by order and collect terms. We have

∆Φ1 �εδχ1 � ε

»
23

Cp123q tδχ2̄χ3̄ � χ2̄δχ3̄u� ε

»
234

Cp1234q tδχ2̄χ3̄χ4̄ � χ2̄δχ3̄χ4̄ � χ2̄χ3̄δχ4̄u� ε

»
2345

Cp12345q δχ2̄χ3̄χ4̄χ5̄ � χ2̄δχ3̄χ4̄χ5̄�� χ2̄χ3̄δχ4̄χ5̄ � χ2̄χ3̄χ4̄δχ5̄

(� � � � . (4.2)

Now, as per [19] we substitute the inverse expression (2.16) into the above to get the

extremely cumbersome expression given by (A.1). Recall that we wrote down the inverse

of (2.14) as (2.16). Collecting like terms and writing their coefficients in terms of their

independent momenta the expression reduces nicely. We shall write it out order by order

here, where the argument in the kernels labelled with a p�q is taken to be minus the sum

of the remaining arguments. First order is simply ∆Φ � δΦ� � � � .
Second order.� � � � ε

»
23

"
q̂

1̂
δ tDp� 23qΦ2̄Φ3̄u � q̂

1̂
δΦ2̄Dp� 31qΦ3̄ � q̂

1̂
Dp� 12qΦ2̄δΦ3̄

*
(4.3)
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∆Φ = −ε

Φ Φ

ΦΦΦ

Φ

δ

q

Figure 1. ∆Φ.

Third order.� � � � ε

»
234

"
q̂

1̂
δ tDp� 234qΦ2̄Φ3̄Φ4̄u � q̂

1̂
δ tDp� 23qΦ2̄Φ3̄uDp� 41qΦ4̄� q̂

1̂
Dp� 12qΦ2̄δ tDp� 34qΦ3̄Φ4̄u � q̂

1̂
δΦ2̄Dp� 341qΦ3̄Φ4̄

q̂

1̂
Φ2̄δΦ3̄Dp� 412qΦ4̄ � q̂

1̂
Dp� 123qΦ2̄Φ3̄δΦ4̄

* (4.4)

The fourth order expression is written down in appendix A. Note that in the above, for

each term containing δ tDpq, i, � � � , jqΦpiq � � �Φpjqu, we define q to be q � pi � � � � � pj. As

was done in [19] we now hypothesize a generalisation to the expression given in that paper,

(eqn. (4.4) in their paper). We write

∆Φ1 � �ε 8̧
n�2

ņ

i�2

ņ

j�i

»
2���n q̂1̂Φ2̄ � � �Φi�1

δ
 
Dp�, i, � � � , jqΦī � � �Φj̄

(��Dp�, j � 1, � � � , n, 1, � � � , i� 1qΦj�1
� � �Φn̄.

(4.5)

It is now a simply a matter of proving that this expression leaves the Chalmers-Siegel

action of self-dual Yang-Mills (2.10) invariant which is a similar calculation to that in [19].

Because of the CPT self conjugacy property of the N=4 SYM multiplet, then the ensuing

calculation is in fact easier than that given in the pure Yang-Mills setting of [19] as ∆Φ̄ is

eliminated from the self-dual part of the action.

Figure 1 is a diagrammatic expression of (4.5) with the the dotted leg representing

the argument not integrated over, i.e. p1. In the paper [19], the transformation of the free

fields was written as δBppq � εBppGq and in the expression for δA they wrote something

of the form A2̄ � � �Ai�1
AīG � � �Aj̄GAj�1

� � �An̄. Here the situation is more complicated and

an operation is performed on the group of fields enclosed in the parenthesise that mixes up

fermionic and bosonic degrees of freedom. The summation here means to sum over all n,

the total number of legs, and all i and j with 2 ¤ i ¤ j ¤ n. As we shall see later, there is

no conceptual difficulty in calculating the transformations of each of the component fields.
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∆SI =

Φ

Φ

∆ΦIΩΦ∆SF = ∆Φ

k + 1

k

Figure 2. Change in the self-dual action ∆S.

First however, let us now consider how to prove that the transformation Φ Ñ Φ̀ �
Φ�∆Φ does indeed leave the action (2.10) invariant. The change in the action is

∆SSD �2tr

»
d4pd4θ ΦppqΩppq∆Φp�pq�� 2

3
tr

»
123

d4θ p̂1 tp̄3 � p̄2u∆Φp�1qΦp�2qΦp�3q� 2

3
tr

»
123

d4θ p̂1 tp̄3 � p̄2uΦp�1q∆Φp�2qΦp�3q� 2

3
tr

»
123

d4θ p̂1 tp̄3 � p̄2uΦp�1qΦp�2q∆Φp�3q
with Ωppq � p̂p̌ � p̃p̄ as before, after transforming into momentum space and stripping

off δ functions and various factors of 2π. Using momentum conservation and the cyclical

property of the trace, (recall that the fields contain the generators of the gauge group),

and relabelling arguments the change in the action easily reduces to

∆SSD �2tr

»
d4pd4θ ΦppqΩppq∆Φp�pq�� 2tr

»
12

d4θ tp1, p2u∆Φp1� 2qΦp�1qΦp�2q
where the bracket t , u is defined as tpi, pju � p̂ip̄j� p̄ip̂j. We shall separate the calculation

into two distinct parts, ∆SF , the free part and ∆SI , the interaction. The diagrams for

these are given in figure 2, clearly the free part is just a two point vertex with Ω as

the vertex factor which as we recall is invariant under the isometry x Ñ xG and the

interacting part is a 3 point vertex with I given by tk, k � 1u. The vertex factor I is

clearly not invariant under xÑ xG For each part we shall collect all possible diagrams and

extract algebraic expressions from them for ∆SF , the free part, and ∆SI and show that

∆SSD � ∆SF �∆SI � 0.

As discussed earlier, the expression enclosed in the brackets

Ψq � »
i���j Dpq, i, � � � , jqΦī � � �Φj̄

is itself a superfield with argument q satisfying (2.6) and (2.7) and the solutions to the

constraints are expressed in (2.19). The transformation (3.7) is applied to the superfield
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∆Φ = −ε

Φ Φ

ΦΦΦ

Φ G

Φ Φ

ΦΦΦ

Φ G−1

+
q

Figure 3. ∆Φ.

enclosed in the brackets with component fields A, λ, C, λ̄ and Ā. This is represented as a

diagram in figure 3.

We will proceed by drawing all the possible diagrams that make up ∆SF , figure 4.

Now the expression in brackets satisfies the constraints, and so does the part outside the

brackets. We write

∆SF � �ε 8̧
n�2

ņ

i�2

ņ

j�i

tr

»
12���n q̂1̂Ωp1qΦ1̄Φ2̄ � � �Φi�1

 
Dp�, i, � � � , jqΦī � � �Φj̄

(G��Dp�, j � 1, � � � , n, 1, � � � , i� 1qΦj�1
� � �Φn̄�GÑ G�1.

Next we can use the cyclicity of the trace and relabel arguments as follows

∆SF � �ε 8̧
n�2

n�1̧

j�1

ņ

k�j�1

tr

»
12���n q̂k̂Ωpkq  Dp�, 1, � � � , jqΦ1̄ � � �Φj̄

(G��Dp�, j � 1, � � � , nqΦj�1
� � �Φn̄�GÑ G�1

and then define

Ψ � »
1���j Dpq, 1, � � � , jqΦ1̄ � � �Φj̄

Θ � »
j�1���n q̂Ωpkqk̂

Dpq, j � 1, � � � , nqΦj�1
� � �Φn̄.
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q

q

a

a

Ω

Ω

Φ

ΦΦΦ

Φ
Φ

Φ

G−1

+

Φ

ΦΦΦ

Φ
Φ

Φ

G

∆SF = −ǫ

Figure 4. Change in the free part of the self-dual action ∆SF .

Both of these have the form (2.18) and as we proved in section 2.2 satisfy the con-

straints (2.6) and (2.7) and the solution to these constraints are of the form (2.19) with a

similar expression for Θ. By writing in component form it is possible to show that

tr

»
q

ΨG�1pqqΘpqq � �tr »
q

ΨpqqΘGpqq.
by utilizing the integral over θ which picks out the θ4 component.

Therefore, figure 4 becomes figure 5 and there is a summation over cyclic rotations

of the vertex Ω around the diagram. The diagram of figure 5 becomes the following

expression where a factor of tDΦ � � �ΦuGDΦ � � �Φ can be taken out of a cyclic clockwise

sum over rotations of Ω with the momentum of the first leg enclosed in brackets being p1,

∆SF � �ε 8̧
n�2

n�1̧

j�1

tr

»
1���nXp1, jq  Dp�, 1, � � � , jqΦ1̄ � � �Φj̄

(G
Dp�, j � 1, � � � , nqΦj�1

� � �Φn̄

where the coefficient X1,j is given by

Xp1, jq � q̂G

1̂G
ΩG

1 � � � � � q̂G

ĵG
ΩG

j � q̂zj � 1
Ωj�1 � � � � � q̂

n̂
Ωn.

Moving on to the cubic part of the action, ∆SI , we have a sum over cyclic rotations

of a three point vertex with factor I around all possible diagrams, as given in figure 6. We

can then undo the transformation in the second diagram as before to arrive at figure 7.

Similarly then, rotating the vertex I clockwise around the diagram and with the first leg
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Φ

ΦΦΦ

Φ
Φ

Φ+

Φ

ΦΦΦ

Φ
Φ

Φ

G

G

Ω

Ω

q

q

a

a

∆SF = −ǫ

Figure 5. Change in the free part of the self-dual action ∆SF .

Φ

ΦΦΦ

Φ
ΦΦ G−1

+

Φ

ΦΦΦ

Φ
Φ

Φ

G

Φ

Φ

I

I q

qa

a

∆SI = −ǫ

Figure 6. Change in the interacting part of the self-dual action ∆SI .

enclosed in the brackets has momentum p1, we have

∆SI � �ε 8̧
n�2

n�1̧

j�1

tr

»
1���n Y p1, jq  Dp�, 1, � � � , jqΦ1̄ � � �Φj̄

(G
Dp�, j � 1, � � � , nqΦj�1

� � �Φn̄
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Φ

ΦΦΦ

Φ
ΦΦ

+

Φ

ΦΦΦ

Φ
Φ

Φ

G

Φ

Φ

I

I

G

q

q

a

a

∆SI = −ǫ

Figure 7. Change in the interacting part of the self-dual action ∆SI .

with

Y p1, jq � � j�1

ķ�1

tk̂G, pk � 1qGu
kG, zk � 1

G
pq, p1,kq � n�1̧

k�j�1

tk, k � 1u
k̂zk � 1

pq, pj�1,kq. (4.6)

The left hand sum should be interpreted as zero when j � 1 and the right hand sum

should be interpreted as zero when j � n � 2. When expanded out, the summations

reduce to
j�1

ķ�i

tk, k � 1u
k̂zk � 1

pq, Pi,kq � �q̂ pω�q � ωi � � � � � ωjq
where ωp � p̄p̃{p̂. Evaluating the sums in (4.6) we get

Y1,j � �
q̂G

!
ωG�q � ωG

1 � � � � � ωG
j

)� q̂
!
ωq � ωj�1 � � � � � ωn

)	
Now, �q � p1 � � � � � pj � 0 and �pj�1 � � � � � pn � 0 we subtract these from each of the

above brackets to arrive at

Y1,j � q̂G
!
ωG�q�|�qG�ωG

1 �1̌G�� � ��ωG
j �ǰG)�q̂!ωq�q̌�ωj�1�~j � 1�� � ��ωn�qn) (4.7)

and then take out a factor of 1{p̂ from each term ωp � p̌ as follows

Y1,j � q̂G

q̂G
ΩG

q � q̂G

1̂G
ΩG

1 � � � � � q̂G

ĵG
ΩG

j � q̂

q̂
Ω�q � q̂zj � 1

Ωj�1 � � � � � q̂pnΩn

Terms in Ωq and and Ω�q cancel since ΩG � Ω. We arrive at

Y1,j � q̂G

1̂G
ΩG

1 � � � � � q̂G

ĵG
ΩG

j � q̂Gzj � 1
Ωj�1 � � � � � q̂pnΩn � Xi,j
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A

ξAλG
A

A

A

A

AG

AG

+G → G−1

∆A = −ǫ

Figure 8. Change in the component field ∆A.

and since all terms in the summation over j and n are linearly independent and sum to

zero, we arrive at the result, ∆S � ∆SF �∆SI � 0 as required.

Since we now have calculated an expression for ∆Φ and proved it, we can in principle

calculate the expressions for the transformations of the component fields. For example,

let us pick out the zeroth order θ component of ∆S. We will have diagrams of the form

figure 8 or algebraically

δA1 � �ǫ 8̧
n�2

ņ

k�2

ķ

i�2

ņ

j�k

»
2���n 1̂

q̂
Γpq, i, � � � , jqΓpq, j � 1, � � � , n, 1, � � � , i� 1q��A2̄ � � �AīG � � � ξAλA k̄G � � �Aj̄G � � �An̄�GÑ G�1.

Similarly, one could calculate more complicated expressions for the rest of the compo-

nent fields.

5 Summary and conclusions

We began by reviewing the formulation of light cone N=4 super Yang-Mills theory on the

light cone [17] and writing the action in terms of superfields Φ and Φ̄, (2.9). The CPT

self conjugacy property of the fields was used to express the action in terms of Φ only, at

the expense of introducing covariant derivatives in the action. The self-dual part however

contains only 4 covariant derivatives giving us the Chalmers-Siegel action [15] which is

free classically. The full action contains the wrong helicity content for consistency with

the MHV rules so we define a canonical transformation from the self-dual sector to a free

theory with field variables χ and we write down the result given in [17] for the expression

Φrχs, (2.14). Further, we calculate the inverse of this field redefinition by writing down an

ansatz for χrΦs and substituting it into a recursion relation to prove it.

It was briefly discussed how to contruct symmetries in N � 1 chiral supersymmetry

using isometries x Ñ xG. This helped us to see how to construct symmetries of a free

N � 4 susy theory with action (3.3). We proceeded to calculate a field transformation

order by order (up to fourth order in the field variables) by writing ∆Φ in terms of the

– 18 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
6

free fields χ, whose transformation we knew, and then substituted the inverse field redef-

inition to write ∆Φ in terms of the original variables. We used these results to guess an

expression to all orders in perturbation theory and this was proved by substituting it back

into the self-dual action (2.10) to show ∆SSD � 0 thus proving our final result (4.5). We

concluded by showing how, in principle, we can use our result to calculate the component

field transformations, and gave an example of the simplest calculations by writing down

∆A in terms of A and λ.

Symmetries of the self-dual Yang-Mills equations were discussed in the paper [28] from

the twistor viewpoint. It may be interesting to extend our methods here to the twistor

formalism using the N � 4 Yang-Mills twistor action introduced in the recent paper [29].
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A Order by order calculation of ∆Φ up to quartic terms

In section 4 we wrote down ∆Φ in terms of the free field χ, (4.2). Carefully substituting the

inverse field redefinition, (2.16) being careful to label the arguments correctly and maintain

the order of the fields, we arrive at

δΦ1 � εδΦ1 � ε

»
23

δ tDp123qΦ2̄Φ3̄u � »
234

δ tDp1234qΦ2̄Φ3̄Φ4̄u� ε

»
23

δ tDp12345qΦ2̄Φ3̄Φ4̄Φ5̄u� ε

»
23

Cp123q�δΦ2̄ � »
45

δ tDp�245qΦ4̄Φ5̄u � »
456

δ tDp�2456qΦ4̄Φ5̄Φ6̄u
���
Φ3̄ � »

78

Dp�378qΦ7̄Φ8̄ � »
789

Dp�3789qΦ7̄Φ8̄Φ9̄


� ε

»
23

Cp123q�Φ2̄ � »
45

Dp�245qΦ4̄Φ5̄ � »
456

Dp�2456qΦ4̄Φ5̄Φ6̄


���
δΦ3̄ � »

78

δ tDp�378qΦ7̄Φ8̄u � »
789

δ tDp�3789qΦ7̄Φ8̄Φ9̄u
� ε

»
234

Cp1234q�δΦ2̄ � »
56

δ tDp�256qΦ5̄Φ6̄u
���
Φ3̄ � »

78

Dp�378qΦ7̄Φ8̄


�
Φ4̄ � »

9 10

Dp�49 10qΦ9̄Φ1̄0


� ε

»
234

Cp1234q�Φ2̄ � »
56

Dp�256qΦ5̄Φ6̄


���
δΦ3̄ � »

78

δ tDp�378qΦ7̄Φ8̄u
�Φ4̄ � »
9 10

Dp�49 10qΦ9̄Φ1̄0
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� ε

»
234

Cp1234q�Φ2̄ � »
56

Dp�256qΦ5̄Φ6̄


���
Φ3̄ � »

78

Dp�378qΦ7̄Φ8̄


�
δΦ4̄ � »

9 10

δ tDp�49 10qΦ9̄Φ1̄0u
� »
2345

Cp12345qδΦ2̄Φ3̄Φ4̄Φ5̄ � »
2345

Cp12345qΦ2̄δΦ3̄Φ4̄Φ5̄� »
2345

Cp12345qΦ2̄Φ3̄δΦ4̄Φ5̄ � »
2345

Cp12345qΦ2̄Φ3̄Φ4̄δΦ5̄. (A.1)

This is a somewhat cumbersome expression but we proceed by collecting like terms. First

order is simply ∆Φ1 � εδΦ1 � � � � . Second order gives us� � � � ε

»
23

�
δ tDp123qΦ2̄Φ3̄u � δΦ2̄Cp123qΦ3̄ � Cp123qΦ2̄δΦ3̄


� � � �
and further, when the coefficients C and D are written explicitly in terms of their argu-

ments, rearranged and momentum conservation used this becomes (4.3),� � � � ε

»
23

"
q̂

1̂
δ tDp� 23qΦ2̄Φ3̄u � q̂

1̂
δΦ2̄Dp� 31qΦ3̄ � q̂

1̂
Dp� 12qΦ2̄δΦ3̄

*
.

We shall now extract the third order terms, carefully multiplying out the brackets and

keeping terms cubic in Φ and then relabelling variables of integration. We arrive at� � � � ε

»
234

"
δ tDp1234qΦ2̄Φ3̄Φ4̄u�� Cp154qδ tDp�523qΦ2̄Φ3̄uΦ4̄ � Cp125qΦ2̄δ tDp�534qΦ3̄Φ4̄u�� δΦ2̄ tCp125qDp�534q � Cp1234quΦ3̄Φ4̄�� tCp154qDp�523q �Cp1234quΦ2̄Φ3̄δΦ4̄�� Cp1234qΦ2̄δΦ3̄Φ4̄

*� � � �
and the first argument of the kernels C and D is equal to minus the sum of the remaining

arguments. For example, in the second term, �p5 � �p2 � p3 � p1 � p4. Now write indi-

vidual terms in terms of the independent momenta using the expressions (2.15) and (2.17)

to arrive at our third order expression� � � � ε

»
234

"
δ
 �5̂2̂3̂4̂p5, 2qp5, 2 � 3qΦ2̄Φ3̄Φ4̄

(� 5̂4̂p5, 4qδ 2̂3̂p�5, 2qΦ2̄Φ3̄

(
Φ4̄� 2̂5̂p2, 5qΦ2̄δ

 3̂4̂p�5, 3qΦ3̄Φ4̄

(� δΦ2̄

2̂23̂4̂p2, 3qp2, 3 � 4qΦ3̄Φ4̄�Φ2̄δΦ3̄

2̂3̂24̂p3, 4qp3, 4 � 1qΦ4̄ � Φ2̄Φ3̄δΦ4̄

2̂3̂4̂2p4, 1qp4, 1 � 2q*� � � � .
These calculations are almost identical to those performed in [19] so the reader may

wish to check these calculations by referring to this paper to verify that the final expression

is indeed (4.4). The fourth order expression is also calculable without a great deal of effort.
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By writing the fourth order terms out, and then expressing them in terms of independent

momenta in the above manner, we find that the calculations are again similar to those

in [19] (See the equation immediately before A.1 in that paper) and so proceed with the

calculation in the same manner they do to find simpler expressions, and then write in terms

of the kernel D. We get� � � � ε

»
2345

"
q̂

1̂
δ tDp� 2345qΦ2̄Φ3̄Φ4̄Φ5̄u � q̂

1̂
δ tDp� 234qΦ2̄Φ3̄Φ4̄uDp� 51qΦ5̄� q̂

1̂
Φ2̄δ tDp� 345qΦ3̄Φ4̄Φ5̄uDp� 12q � q̂

1̂
δ tDp� 23qΦ2̄Φ3̄uDp� 45qΦ4̄Φ5̄� q̂

1̂
Φ2̄δ tDp� 34qΦ3̄Φ4̄uDp� 51qΦ5̄ � q̂

1̂
Φ2̄Φ3̄δ tDp� 45qΦ4̄Φ5̄uDp� 12q� q̂

1̂
δΦ2̄Dp� 3451qΦ3̄Φ4̄Φ5̄ � q̂

1̂
Φ2̄δΦ3̄Dp� 4512qΦ4̄Φ5̄� q̂

1̂
Φ2̄Φ3̄δΦ4̄Dp� 5123qΦ5̄ � q̂

1̂
Dp� 1234qΦ2̄Φ3̄Φ4̄δΦ5̄

*� � � �
It is not hard to envisage that this continues to all orders and we can therefore hypothesise

a final result to all orders in perturbation theory, given by (4.5)
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